

III Semester B.A./B.Sc. Examination, Nov./Dec. 2014 (Semester Scheme) (N.S.) (2012-13 and Onwards) MATHEMATICS – III

Time : 3 Hours

Max. Marks: 100

Answer any fifteen questions:

Instruction: Answerall questions.

 $(15 \times 2 = 30)$

- 1) If H is a normal subgroup of a group G, then prove that the product of any two right cosets of H in G is again a right coset of H in G.
- 2) Define kernel of a homomorphism.

3) If
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix} \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$
 and $\alpha \circ \beta^{-1}$.

- 4) Let $f: G \to G'$ be a homomorphism from the group G' with kernel K then prove that f is one-one if $K = \{e\}$.
- 5) Using column minima method determine an initial basic solution of the following transportation problem.

Destination Origin	D ₁	D ₂	$D_{_3}$	D ₄	Availability
O ₁	1	2	1	4	30
O ₂	3	3	2	1	50
O ₃	4	- 2	5	9	20
Requirement	20	40	30	10	100

- 6) Solve $3x + 5y \le 15$ graphically.
- 7) Define basic solution of L.P.P.
- 8) Test the convergence of the sequence whose nth term is $\frac{\log (n+1) \log n}{\tan \frac{1}{n}}$

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

{ }

- 9) Find the limit of the sequence whose n^{th} term is $\sqrt{n^2 + 1} n$.
- 10) Show that the sequence $\{x_n\}$ whose n^{th} term is $\frac{1}{2x+5}$ is monotonically decreasing.
- 11) Define a bounded sequence.
- 12) Write the nature of a geometric series.
- 13) Discuss the nature of the series $\sum_{n=1}^{\infty} (-1)^n n$.
- 14) Test the convergence of the series $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots$
- 15) Let $\sum a_n$ and $\sum b_n$ be two series positive terms such that
 - i) $\sum b_n$ is convergent and
 - ii) $a_n \le kb_n \ \forall \ n$ except perhaps for finite number of terms in the beginning (k>0) then prove that $\sum a_n$ is also convergent.
- 16) Sum to infinity the series $\frac{1}{7} + \frac{1}{3.7^3} + \frac{1}{5.7^5} + ...$
- 17) Define least upper bound for a function f(x).
- 18) Write the geometrical interpretation of Cauchy's mean value theorem.
- 19) Expand secx by Maclaurin's expansion upto the term containing x^2 .
- 20) Evaluate $\lim_{x \to 1} \left[(1-x) \tan \frac{\pi x}{2} \right]$.
- II. Answer any two questions:

 $(2 \times 5 = 10)$

- 1) Prove that a subgroup H of a group G is a normal subgroup of G if and only if the product of two right cosets of H in G is also a right coset of H in G.
- 2) Let f: G → G' be a homomorphism from the group G into a group G' with kernel K then prove that K is a normal subgroup of G.
- 3) State and prove Cayley's theorem.
- 4) G is any group and g a fixed element of G. Define $T: G \to G$ by $T(x) = gxg^{-1}$, show that T is an isomorphism.

III. Answer any three questions:

(3×5=15)

- 1) Compute all the basic feasible solutions of the system of equation x + 2y + z = 4 and 2x + y + 5z = 5.
- 2) Solve the following L.P.P.graphically : maximize z=3x+2y subjected to the constraints $5x+y\geq 10$, $2x+2y\geq 12$, $x+4y\geq 12$, $x,y\geq 0$.
- 3) Solve the following L.P.P. by simplex method, maximize Z=x-y+3z subject to the constraints $x+y+z\leq 10,\ 2x-z\leq 2,\ 2x-2y+3z\leq 0,\ x,\ y,\ z\geq 0.$
- 4) Obtain an initial solution for the following transportation problem using Vogel's approximation method.

Destination

	D ₁	D ₂	D ₃	Supply
S ₁	2	7	40/	150
S₂	3	3	1	8
S₃	5	4	7	7
S₄	1	6	2	14
Demand	7	9	18	34

Answer any two questions :

(2×5=10)

- 1) Discuss the nature of the sequence $\{x^{\frac{1}{2}n}\}$ x > 0 where x is any real number.
- 2) Test the convergence of the sequences whose nth term are

$$i) \left(\frac{n-3}{n+2}\right)^{n/3}$$

- ii) $1 + \cos n \pi$
- 3) Prove that the sequence whose n^{th} term is $\frac{3n+4}{2n+1}$ is monotonically decreasing and is bounded.

V. Answer any four questions:

(4×5=LJ)

1) State and prove Raabe's test.

()

()

2) Discuss the convergence of the series $\frac{2}{1^2}x + \frac{3^2}{2^3}x^2 + \frac{4^3}{3^4}x^3 + \dots$

(~)

3) Discuss the convergence of the series $\sum \frac{(n!)^2}{(2n)!} x_1^n x > 0$.

()

4) Test the convergence of the series $1 + 2x + 3x^2 + 4x^3 + ...$

()

()

5) Sum to infinity the series $\frac{11.14}{10.15.20} + \frac{11.14.17}{10.15.20.25} + ...$

.

6) Sum to infinity the series $\sum_{n=1}^{\infty} \frac{n^3}{n!} \frac{1}{1}$

e - v

VI. Answer any three questions:

(3×5=15)

1) State and prove Rolle's theorem.

()

2) Discuss the differentiability of the function f(x) defined by

()

$$f(x) = \begin{cases} 1 - 3x & \text{for } x < 1 & \text{at } x = 1 \\ x - 3 & \text{for } x > 1 \end{cases}$$

 $(\)$

()

3) Verify Rolle's theorem for the function $f(x) = x(x+3) e^{-x/2}$ in [-3, 0].

(j

()

 $(\dot{})$

4) Evaluate $\lim_{x \to 1} \frac{x^x - x}{1 - x + \log x}$.

()

5) Obtain Maclaurin's expansion of $\log_e (1 \pm e^x)$ up to the term containing x^4 .

()

()

()